Extended Essay

Subject: Mathematics

Topic: Public-Key Cryptography

Research Question: How do modern
cryptographic methods effectively secure online

communications, transactions, and the internet?

Word Count: 3952




How do modern cryptographic methods effectively secure online communications,

transactions, and the internet?

Contents

An introduction into modern public-key cryptography
1.1 Public Key Cryptography: A high level overview . . . . . . .

1.2 Assumptions in the Public-Key Exchange . . . . . . . .. ..

Divisibility, modular arithmetic, and number theory

2.1 Prime Numbers and factorizing . . . . . . .. ... ... ..
2.2 Modular Arithmetic. . . . . . . ... .0
2.3 Fermat’s Little Theorem . . . . .. ... ... ... .....

2.4 Chinese Remainder Theorem . . . . . . . . . . . . . . . ...

The RSA

3.1 Euler’s Theorem . . . ... ... ... ... .. .......

3.2 Encryption Process . . . . . .. ...

3.3 Applying Fermat’s little theorem to prove the RSA encryp-
tion and decryption . . . . . ...

3.4 Example RSA encryption. . . . .. ... ... ... .....

3.5 Primality Tests . . . . . . .. .. ... o

Elliptical Curve Cryptography

4.1 Introduction . . . . . . . .. ..o
4.2 Singularity case . . . . . .. ..o
4.3 Group Operations . . . . . . . ... ...
4.4 Elliptical Curve Discrete Logarithm Problem . . . . . . . ..
4.5 Elliptical Curve Diffie-Hellman protocol key exchange with

anexample . . ...

Conclusion

40

Page 1 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

Appendix A Code used in encryption and decryption of RSA 46

Appendix B Recommended RSA parameters 47

Appendix C RSA vs. ECC, a comparison of key-size to

security level 48

Appendix D ASCII values of most common symbols 49

Page 2 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

1 An introduction into modern public-key

cryptography

Throughout history, beginning from the days of the Caesar cipher,
individuals have wanted to exchange secret messages. To encrypt and de-
crypt these messages there has always been a secret key that both ends
needed to have. This method is called symmetric cryptography where both
the sender and the receiver have to have the same key. This is very dan-
gerous as if a malicious user got a hold of the key, they could decrypt the

message very easily.

Modern application use public key cryptography which is assymetric
in nature. That means that the encryption and decryption keys are differ-
ent. In it, there are two keys. One is public, everyone has it. The other
one is private. The encrypted message is secured using a public key, and
can only be decrypted using a that same user’s private key. This makes
sense that only the intended receiver can decipher a message sent to them

with their private key if encrypted with that their own public key.

Hence, for the purposes of modern cryptography, messages are ex-
changed without the risk associated with symmetric encryption. This
negates the risk associated with a stolen key, making it near impossible
for malicious users to decipher messages. So, now it brings us to the ques-
tion “How do modern cryptographic methods effectively secure

online communications, transactions, and the internet?”
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1.1 Public Key Cryptography: A high level overview

Let us define two individuals who want to send each other a secret
parcel. Let their names be Alice and Bob wherein Alice is the sender and

Bob is the receiver.

1. First Bob sends an unlocked padlock to Alice (Bob would send that
to anyone even someone he doesn’t really trust). This is the public
key. The only use of an unlocked padlock is to send Bob a parcel

since Bob is the only one who has the key that can open the padlock.

2. Alice locks up the package she wants to send with the padlock Bob

sent her. Only Bob can open the package now.
3. After receiving the package, Bob can open it with his private key.
This simple exchange makes the basis of Public Key Cryptography.

It involves two keys, different one for encryption (padlock) and decryption

(key) and is known as the Public Key Exchange'.

IEllis, James H. “The possibility of secure non-secret digital encryption.” UK Com-
munications Electronics Security Group, 1970.

Page 4 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

1

Plaintext

Message Alice’s Public
Key
%&SDAN2
0-SD-239
ALICE
Plaintext
Message Alice’s Private

Key

Figure 1: Public Key Exchange Visualization

1.2 Assumptions in the Public-Key Exchange

If we need to generate these keys we need to assume a few things

(they will be explored):

1. Generating large prime numbers of a particular bit-size, that is a

particular number of digits, is easy.

2. Multiplying large primes is easy. So if p,q are primes, finding their

product n = p X ¢ is trivial.

3. With a product of primes n, it difficult to recover the prime factors
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p and q.

4. It is easy to compute the encrypted text called Ciphertext. Formally

this is called modular exponentiation and can be be represented like,

Encryption(Message) = Cliphertext (1.1)

5. The reverse of modular exponentiation — Modular root extraction —

is easy given the decryption key,

Decryption( Encryption(Message)) = Message (1.2)

6. For all other cases modular root extraction is difficult. When a third
party gets the encrypted ciphertext and tries to decrypt it, they can-
not do it without the decryption key. Therefore, unlike the encryp-
tion and decryption key are different and that is why it is termed as

Asymmetric Cryptography.

The significance of these operations, to tackle the assumptions, will

be explained and explored later in the essay, specifically section 3.
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2 Divisibility, modular arithmetic, and num-

ber theory

2.1 Prime Numbers and factorizing

Prime numbers, how difficult they are to find, and factor, make the
basis of public key cryptography?. A prime number p € Z* that cannot be
formed by multiplying two numbers together with its only factors being 1
and itself.

Theorem 1 (Euclid’s Theorem). The set of all prime numbers is infinite>.

Consider a finite list of all the primes,

PL=2<pP=3<p3=95<..<pn

Where the product of all primes in that list, P, is,

P=pi-py-ps-...-pn

Consider (P + 1),

2Lynn, Ben. “Number Theory.” Applied Cryptography Group, Stanford University,
crypto.stanford.edu/pbc/notes/numbertheory/crt.html. Accessed on 1 Oct 2018.

3Euclid, and Thomas Little Heath. The Thirteen Books of Euclid’s Elements. Vol.
2, Cambridge University Press, 2015.
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1. (P+1)is a prime: there is at least one more prime.

2. (P+1) isn’t prime: there is some prime p that divides (P +1). Also
if p were on the list it would also divide P. Hence, it would also have
to divide the difference (P + 1) — P = 1. Since no prime divided 1, p
cannot be on the list since primes on the list divide P, so there exists

one additional prime p.

Both cases show that it is impossible to create a finite list of primes.

Few definitions required for further evaluation:
Definition 1. Greatest Common Divisor (ged()): The ged(a,b) where
a,b # 0 is the greatest possible integer (Z") that divides both of the inte-
gers a and b*.
Definition 2. Coprime or relatively prime: Let a and b be two integers.
They are said to be if ged(a,b) = 1, that is, they have no common factors

besides 1%

2.2 Modular Arithmetic

In modular arithmetic, the modulo function gives the remainder upon
division by another number. Two numbers a and b are congruent or equiv-

alent when they give identical remainders upon being divided by a number

4Fannon, Paul et al. “2B: Greatest Common Divisor and Least Common Multiple.”
Mathematics Higher Level for the IB Diploma Option Topic 10 Discrete Mathematics.
Cambridge University Press, 2013, pp. 19-23.
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n. Another way to say it would be that they are congruent in modulo n if

(a — b) is an Z* multiple of n, i.e.,

For example, when 15 and —9 is divided by 12, they give the same

remainder, therefore,

a=b (modn) <= nla—>b (2.1)

This could be said to be a linear congruence if a = ¢qn + r and

b = In + r, that is,

a=b (modn) < 3Jl,q,r€Z :a=qgn+randb=In+r (2.2)

Similarly, other rules for modular arithmetic® are as expected,

ifa=b (modn)and c=d (mod n) then:

e ac = bc (mod n)

e at+c=b+d (modn)

SFannon, Paul et al. “5B: Rules of Modular Arithmetic.” Mathematics Higher Level
for the IB Diploma Option Topic 10 Discrete Mathematics. Cambridge University Press,
2013, pp. 53-55.
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e a—c=b—d (mod n)

e a" =b" (mod n)

e ka = kb (mod n) for all k € Z

Division, however, is different®. Suppose we want to make both sides
of a congruence divisible by d. We can subtract or add a multiple of n from

one side of a congruence. This means the following equation is equivalent,

a=b (modn)=a=b+tn (modn)

This will allow us to make both sides divisible by d. This brings us

to the three rules of division.

e Consider when a = b (mod n) and d divides both a, b, and ged(d, m) = 1,
then,

(mod n)

SHSY

a
d
For example, if 5z = 15 (mod 24) then x = 3 (mod 24) as 5 is

coprime with 24.

e When d and m have same common factors we need to change the

6Fannon, Paul et al. “5C: Division and Linear Congruences.” Mathematics Higher
Level for the IB Diploma Option Topic 10 Discrete Mathematics. Cambridge University
Press, 2013, pp. 56-59.
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modulo when dividing. If a = b (mod n) and d divides a, b, n then,

2.3 Fermat’s Little Theorem

Theorem 2 (Fermat’s Little Theorem). Let p be a prime number and a

any integer. Then a? — a is always divisible by p. It can also be written in

modular arithmetic notation as’:

a’»=p (modp) ora®'=1 (mod p) (2.3)

To prove consider,

Let,a =0 (mod p)

evidently, @ =0 (mod p)

therefore, a’? = a (mod p)

7“Fermat’s Little Theorem.” Brilliant Math &  Science Wiki,
brilliant.org/wiki/fermats-little-theorem/. Accessed on 8 Dec. 2018.
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So now we only need to prove equation 2.3 where a not divisible by

p. Considering the list of the first non-negative numbers p multiplied by a,

0,1,2,3,...p—3,p—2,p—1 (2.4)

= 0,a,2a,3a,....,(p— 3)a, (p—2)a, (p — 1)a (2.5)

Reducing this new list of numbers (mod p), will give us the original list,

that is, we can use a property of the modulus function.

For the proof®, let us take a = 4 and p = 7. This gives us the original

list from 2.4 as

{0,1,2,3,4,5,6}

and the new list from 2.5 as

{0,4,8,12,16,20, 24}

If we reduce this list (mod 7), we get {0,4,1,5,2,6,3}, with all dis-
tinct numbers (mod p). It is also just the original list in a scrambled

order.

From 2.5 we get,

0,a,2a,3a,...,a(p—3),a(p — 2),a(p — 1)a reduced (mod p)

to a list of p so that every remainder (0,1,2,3,....p—3,p—2,p— 1),

8Burton, David M. Elementary Number Theory. Tth ed., McGraw-Hill, Higher Edu-
cation, 2011.
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appears a single time, so it is in a scrambled order (the zero entities in
this list can be disregarded and removed). Both the lists have equivalent

elements (mod p), that means their product is also equivalent (mod p):

a-2a-..-a(p—2)-alp—1)=1-2-...-(p—2)-(p—1) (mod p) (2.6)

Which can be factorized to,

a? 12 (p—=2)-(p—-1)=1-2-...-(p—2)-(p—1) (mod p) (2.7)

By subtracting,

a?t1-2-..-(p—2)-(p—1)—1-2-...-(p—2)-(p—1) =0 (mod p) (2.8)

or,

Since all the factors, 1,2, ..., p—2,p—1, are lesser than p, they cannot
be divided by p. Therefore, a?~! — 1 must be divisible by p, which proves

another form of equation 2.3 :

a?'—1=0 (mod p) (2.10)
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2.4 Chinese Remainder Theorem

Theorem 3 (Chinese Remainder Theorem®). If two numbers p and q are

coprime, then the simultaneous linear congruencies,

y=a (modp)andy=>b (mod q)

have a unique solution,

n= (mod pq)

For example, let us take the pair of equations,

)

y=3 (mod 5)

y=2 (mod 3)

/

That gives us,

y=3 (modb5)=z=3813,18,23,28,...

y=2 (mod3)=z=25811,14,17,20,23, ...

Doing this is a long process, and we only have 2 solutions, 8 and 23.

In the first list, all numbers are +5, in the second list they are +3. So, to

9Fannon, Paul et al. “5D: Chinese Remainder Theorem.” Mathematics Higher Level
for the IB Diploma Option Topic 10 Discrete Mathematics. Cambridge University Press,
2013, pp. 59-62.
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get number in both lists we need to +15. Therefore, all solutions are in the

form 8 + 15k, or y = 8 (mod 15).
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3 The RSA

Rivest-Shamir-Adleman abbreviated to RSA'? is a very popular pub-
lic key cryptosystem used to data transmission on the internet and to secure
sensitive transactions. Like introduced in section 1.1, it is an asymmetric

cipher.

3.1 Euler’s Theorem

Definition 3. Euler’s totient function''. : ¢(n) denotes the set of numbers
< n and which are relatively prime to n. In other words, ¢(n) is the number
of m € N such that 1 < m < n and ged(m,n) = 1. It makes the basis
of the RSA for the computation of relatively prime numbers required for

encryption and decryption.

Let us take the example of ¢(12) = 4,

ged(1,12) =1 ged(5,12) =1 ged(9,12) =
gcd(2,12) =2 gcd(6,12) = 6 gcd(10,12) = 2
gcd(3,12) =3 gcd(7,12) =1 gcd(11,12) =1
ged(4,12) =4 gcd(8,12) =4 gcd(12,12) = 12

ORivest, R. L., et al. “A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems.” Communications of the ACM, vol. 21, no. 2, 1 Jan. 1978.

HPpettofrezzo, Anthony J., and Donald R. Byrkit. FElements of Number Theory.
Prentice-Hall, 1970, p. 80.
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Therefore for prime p,

d(p)=p—1 (3.1)

Since all the integers Z < p are relatively prime to p. The figure 2
for this function till n = 8000 shows it clearly. There is an evident upper

bound of the line ¢(n) =n —1

8000 -

Top most line is

70001 ®(n)=n-1

6000
5000
%7000
3000
2000

1000 +

0 1000 2000 3000 4000 5000 6000 7000 8000
n

Figure 2: Graph of ¢(n) for n < 8000

3.2 Encryption Process

The steps taken for encrypting a plaintext message using the RSA

are as follows'?:

12Rivest, R. L., et al. “A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems.” Communications of the ACM, vol. 21, no. 2, 1 Jan. 1978.
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1. Compute two extremely big prime numbers p and ¢ which can be

tested for primality (section 3.5).

2. Compute n where,

3. Compute ¢(n) where,

4. Now, we can disregard p and ¢, such that we erase them from the

system in question.

5. Choose two numbers e (encryption key) and d (decryption key) where

e is relatively prime to ¢(n), i.e., ged(e, ¢(n)) = 1 therefore,

ed=1 (mod ¢(n)) (3.4)

Therefore, it complies with Euler’s Theorem where ¢(n) is Euler’s
function which is the amount of numbers smaller than n that are
coprime to it. This means that, (p — 1)(¢ — 1) is coprime to n. The

proof for the Little Theorem follows in the next page.

6. The pair (e,n) makes up the public key, wherein n is called the mod-
ulus, and it signifies the number of digits the prime numbers are, and

e the exponent.
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7. The private key is d and may sometimes be written as (d,n).

8. Let the plaintext message be M such that 0 < M < (n —1). It
is possible to convert a message to the decimal system using ASCII

values (table in Appendix 5).

9. To encrypt the plaintext message M to ciphertext C, the formula

used is,

C'=M° (modn) (3.5)

3.3 Applying Fermat’s little theorem to prove the

RSA encryption and decryption

Fermat’s Little Theorem as seen in equation 2.3 is'3 1,

a’? =a (mod p) (3.6)

Multiplying with a?~!,
a? ' xa’ =a’ =a (mod p) (3.7)
13Kaliski, Burt. “The Mathematics of the RSA Public-Key Cryp-
tosystem.” Mathematics and Statistics Awareness Month, Mathaware,

www.mathaware.org/mam/06/Kaliski.pdf. Accessed on 15 Oct. 2018.
Ouwehand, Martin. “The (Simple) Mathematics of RSA.” L ’Autorit De Certification
De L’EPFL, certauth.epfl.ch/rsa/. Accessed on 15 Oct. 2018.
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Supposing we repeat this multiplication K times,

K(p-1)

a x a’ =a (mod p) (3.8)

Regrouping considering a? = a?~! x a,

PV x aP ' xa=a (mod p)
factoring a?~! = aEFVPD 5 ¢ =4 (mod p) (3.9)
= VPV = ¢ (mod p)

Let K +1 = N, since they are both constants,
Ne=DH = ¢ (mod p) (3.10)

a

Holding true for all @ and N

From equation 3.2, 3.3, and 3.4 we know n = p - ¢ and e has no
common factors with ¢. Then we calculate the multiplicative inverse of e
(mod ¢), i.e. the number d, which is the decryption key. Giving, ed = 1+

a multiple of ¢ represented as L(¢),

ed=L(¢)+1 (3.11)

From equation 3.5 we know that,

C'=M° (modn) (3.12)
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Here C' is the ciphertext made from plaintext M. Decryption will
require calculation of z = C° (mod n) = M°? (mod n). This means the
plaintext z is the original message M again. To prove this, we can use

equation 3.11 and 3.5, and taking n = pq,

M = MEFOH = M (mod p) (3.13)

= M* — M = multiple of p (3.14)

and the same of ¢ instead of p such that,

M = MEOTL = M (mod q) (3.15)

= M*®" — M = multiple of ¢ (3.16)

Therefore, M — M can only be a multiple of the primes p, q if it
is a multiple of n, its product. Implying the equation mentioned above
using the theorem 3 which is the Chinese Remainder Theorem mentioned
in section 2.4,

M =M (mod n) (3.17)

This equivalence only establishes the fact that M°? and M have the
same remainders (mod n). Since 0 < M < n, the remainder of dividing
Med | n is always M. Therefore, to recover M, C°¢ (mod n) must be

computed.

The public key is the pair (e,n). But, for decryption you need d

(private key) and to compute,
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C? (modn)=M (3.18)

Even though (e,n) is public knowledge, ¢ is not, so d cannot be
calculated since it is the multiplicative inverse of e (mod ¢(n)). n is public
knowledge though, but it is not factored into p,q. As stated, RSA is safe
because of the near impossible problem that is prime factorization of large
prime numbers. Therefore since factoring n into p, ¢ is almost impossible,
it is nearly impossible to get ¢ = (p—1)(¢— 1) and consequently d, making
RSA safe.

3.4 Example RSA encryption

Following the steps in section 3.2 we can take a simple example with

small prime numbers to show how RSA is securely encrypted.

1. Let, p="T7and ¢ =11

2. Therefore, n =7 x 11 =77

3. So, ¢(77) = (T—1) x (11 — 1) = 60

4. Disregarding p and gq...

5. We need to find a which satisfies the condition for in equation 3.3,
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that is, to a number with two prime factors ed, and is equivalent to 1
(mod ¢(n)). The following are numbers which equal 1 (mod ¢(77))

or 1 (mod 60), but they must be tested for factors:

61 121 181 241 301
361 421 481 541 601
661 721 781 841 961
1021 1081 1141 1201 1261
1321 1381 1441 1501 1561
1621 1681 1741 1801

For the purpose of this example let us take 481 (although it does
not matter), therefore, e = 37 and d = 13 since 13 x 37 = 481 and
481 (mod 60) =1

6. (37,77) is sent out as the public key

7. (13,77) is kept as the private key

Now, we must convert our message into a number from 1 to (n — 1). Let

us take the message “IB” in ASCII is 73 66. That is,

To encrypt we use equation 3.5, written in code in the Appendix A,

73%" (mod 77)
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= 17=73*  (mod 77)

and,

66" (mod 77)
= 66 = 66° (mod 77)

Therefore C = 17 66.

Decrypting using equation 3.18,

17% =73 (mod 77)

and,

66" =66 (mod 77)

Giving our original message in ASCII as 73 66.This encryption and decryp-

tion method has been mathematically proven in section 3.3

3.5 Primality Tests

RSA relies on very large prime numbers for its keys. Due to the
inherent nature of prime numbers, there is no such formula that has been
devised that can give us a list of primes below n. This is what makes the
RSA secure as it is very difficult to factor n into p,q. Therefore, the best
way of finding primes is testing each number for whether it is prime or not.
For smaller numbers this is easy, but for larger numbers it is quite difficult,

therefore primality tests are used. There are various primality tests such as
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Miller-Rabin Test and Fermat’s test'® used to do this but for the purpose
of this essay they will not be explored. Regardless of primality tests, RSA

is still very secure.

5Bressoud, David M. “The RSA Public Key Crypto-System.” Factorization and Pri-
mality Testing Undergraduate Texts in Mathematics, 1989,.
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4 Elliptical Curve Cryptography

For applications'® on the Internet and Blockchain such as securing
digital currency and transactions like Bitcoin, ECC or Elliptical Curve
Cryptography might seem like better than RSA due to two smaller bit
sizes, that is a smaller n, while simultaneously being harder to crack'’.
Appendix C shows a comparison in the bit-sizes required for an equivalent

security level in both RSA and ECC.

4.1 Introduction

Elliptical curves are curves with the formula'®:
y* =2 +axr+b (mod p) for all a,b € F, (4.1)

Here y,z, a,b are all within F}, wherein can be any finite field F, : in any
modulo p domain Z/pZ. In this modulo field, we may define subgroup by

restricting the domain of the elliptical curve.

16 Amara, Moncef, and Amar Siad. “Elliptic Curve Cryptography and Its Applica-
tions.” International Workshop on Systems, Signal Processing and Their Applications,
WOSSPA, May 2011.

1"Bauer, Johannes. “Elliptic Curve Cryptography Tutorial.” Johannes Bauer,
www.johannes-bauer.com/compsci/ecc/. Accessed on 19 Sept. 2018.

8Corbellini, Andrea. “Elliptic Curve Cryptography: a Gentle Intro-
duction.” Andrea Corbellini Atom, andrea.corbellini.name/2015/05/17 /elliptic-curve-
cryptography-a-gentle-introduction/. Accessed on 24 Sept. 2018.
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Definition 4. Subgroup: A subset H of a group G is a subgroup of G if

H is itself a group under the operation in G *°.

4.2 Singularity case

Another condition is that the coefficients must be such that they avoid
a singularity. A singular curve cannot be used for the purposes of Elliptical
Curve Cryptography. In the diagrams?’ given beneath the the blue curve
is that of 4> = 23+ ax +b purple curve is that of y = 2® + Az + B. For us to
take a square root, 22 + ax + b > 0. Therefore there is no blue curve when
the purple line is negative. So, all blue curves include both the positive and
negative values of the square root. A singularity occurs when the purple

curve is tangent to the z-axis.

Figure 3: Singularity on elliptical curve

The point of tangency will exist where the minimum of the curve

YRodin, Altha. Subgroups. M328K, University of Texas, Aug. 2000,
web.ma.utexas.edu/users/rodin/343K /Subgroups.pdf.

20Davis, Tom R. “Elliptic Curve Cryptography.” Mathematical Circles Topics, 3 Nov.
2013, www.geometer.org/mathcircles/ecc.pdf. Accessed on 9 Jan. 2018.
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y = x° + Az + B, the purple line, is on the z-axis.

That is when:
dy

de

Taking the derivative of y = 23 + Az + B,

d
o321 A=0
dx
—A . .
For z = =3 to be touching the x-axis, we need:

() + () v
()
()

—4A3
= B?
27
0=4A4°+27B* (4.2)

From equation 4.2 we can see that if 442 + 27B8? = 0 then there is
a singularity, so the properties discussed in section 4.3 will not be valid.

Therefore, we cannot use a curve with a singularity for ECC.

Hence from now on we will assume the one condition the coefficients
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of elliptical curves must follow is that:

4A% +27B* £ 0 (4.3)

4.3 Group Operations

Elliptical curves have many properties that are useful to making it so

secure which are based on the ideas?':

e A line that is tangent to the curve but also not a vertical line will

always intersect precisely one more point, a third point.

e Elliptical curves exist in projective planes. They have a property
wherein there exist imaginary points at infinity represented by O.
For the purpose of cryptography, O is an artificial point or zero point
that exists “at infinity” at the coordinates (0,1,0) and will form a
vertical line (the reason to why this point exists is out of the scope
of this essay).

Using these properties we can define two group operations®?:

Point Addition: As shown in the image below, P + Q = R is

21Gingh, Soram Ranbir, et al. “A Critical Review on Elliptic Curve Cryptogra-
phy.” International Conference on Automatic Control and Dynamic Optimization Tech-
niques (ICACDOT), Sept. 2016.

22Davis, Tom R. “Elliptic Curve Cryptography.” Mathematical Circles Topics, 3 Nov.
2013, www.geometer.org/mathcircles/ecc.pdf. Accessed on 9 Jan. 2018.
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represented as the reflection on the x-axis of the third intersecting point

R’ of line PQ with the elliptical curve.

Q_ g

=5 0 5

-5

Figure 4: Point Addition

For all P, @, and R in F},, we have the following addition properties,

taking from the properties of F,, defined in subsection 4.1:

P+Q=Q+P
P+0O=P
0+0=0

P+(Q@+R) =(P+Q)+R

It also shows us that point doubling, explained below, is a special

case of point addition wherein P is getting added to itself.

To algebraically derive the coordinates of R let PQ be linear equation

in the form y = mx + c. Like all other linear equations, m is the gradient
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and c is the y-intercept. Let the point P have coordinates (xp,yp) and the

point () have the coordinates (zg,yg). For the case where P # @),

m=9P "9 (4.4)
Tp —XQ

Finding the intersection of the line P() and the elliptical curve,
(mz +yp)® =2°+ Az + B (4.5)
Since (zp,yp), (20, yq), and (xg,yr) are all solutions,

(x —zp)(z —2q)(x —xR) =0 (46)

2® — 2*(xp + 2o + TR) + (TP + TQTR + TPTR) — TPTQTR =0

Matching coefficients gives us the following coordinates for R as (g, yr),

TR =m?— (xp + xq)

(4.7)

Yr = m(QUP - IR) —Yyp

Point Doubling: is Finding the line tangent to the point to be
doubled, P, and then reflecting the intersecting point R’ through the z-

axis on the curve to get R. Represented as P+ P = R = 2P.

For when P = @), like in the case of Point Doubling, we can just take
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Figure 5: Point Doubling

the derivative of the elliptical curve function (equation 4.1) at (z,y),

d o d 4

%(y)—%(x +az +b)

d

ﬁ(zy) =327 +a (4.8)
@_3x2+a
de 2y

That means, if P = @ at (zp,yp), then the gradient m at that point

is,
2

_3zpta (4.9)

2yp

Which makes the coordinates of point R, (zg,yr),
2

Tr =m" —2xp

(4.10)

Yr = m(SUP - xR) —yp

There is sometimes a special case of Point Addition or Point Doubling,
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when two points create a vertical point.

“

-4

Figure 6: Vertical Point

The phenomenon shown in figure 6 happens in two cases:

1. When P# Q and zp =29, = P+ Q =0

2. If P =@ (represented by point R in figure 6) and yp = yg = 0 then
P+Q=0

Together these properties can be used for Scalar Multiplication R = k-P
which is defined by R = P+ P+ P (when k = 3), a number of times. This
brings us to the definition of G known as the The Base Point or Generator
Point such that for any point G' on the curve, the set of all the points on
that curve is {O,G,G+ G,G + G+ G, ...} and is called a cyclic subgroup
of the points on the elliptical curve.

Definition 5. The Base Point or Generator Point: G € E(Z/pZ) where

E is an elliptical curve modulo p that generates a cyclic subgroup. That
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is, any point in the subgroup (a subset of all the points on the curve) can

be computed through repeat addition of G
Properties of the Generator Point:

e Order of the generator point: ord(G) = n, is the number of points
that the generator point can make through repeated addition. It is

also the smallest possible integer k such that kG = O

e Cofactor: h = %, that is the total number of elements in all
groups (all points on the curve) divided by ord(G). A cofactor of
n = 1 is ideal since larger cofactors are more susceptible to attacks

and are undesirable.

The methods used to find the generator point are beyond the scope of this

essay as they involve the Lagrange Theorem and Group Theory.

4.4 Elliptical Curve Discrete Logarithm Problem

How do we go from this idea of an elliptical curve to a crytosystem
that can secure everything on the internet? Looking at the assumptions in
section 1.2 gives us a hint. Using a one-way encryption function, also known

as a trapdoor function, makes ECC secure since it allows one operation to

23Yin, Xinchun, and Jinliang Zou. “A Parallel Base Point Choosing Algorithm of ECC
on Binary Field.” International Conference on Systems and Informatics (ICSAI2012),
May 2012.
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be computed easily but the reverse is difficult. That is why it is easy
to encrypt a message but very difficult to decrypt it. We have already
encountered this in the idea of scalar multiplication.

Definition 6. Elliptical Curve Discrete Logarithm Problem (ECDLP): For
an elliptical curve E over a finite field K,. Given a point @) € F(K) and
generator point G, it is currently computationally infeasible to compute k

such that Q = kG where k is the discrete logarithm of @ to the base G**

What makes ECDLP so difficult to crack is the one-way nature of
scalar multiplication regarding elliptical curve [E in the finite field F},. This
one-way function or trapdoor function that secured the RSA was the fac-
toring of primes, and for ECC it is the ECDLP. These two trapdoor or
one-way functions are the basis for the security of the internet. Although
primality testing has allowed for some progress to be maid when factoring

prime numbers. On the other hand, there has been no such revolutionary

progress for the ECDLP.

4.5 Elliptical Curve Diffie-Hellman protocol key ex-

change with an example

Domain parameters are represented as {p,a,b,G,n,h} and are the
parameters available to both parties exchanging messages and to any third

parties since it is on the public domain. An elliptical curve F is used for

24Smart, N. P. “The Discrete Logarithm Problem on Elliptic Curves of Trace One.”
Journal of Cryptology, vol. 12, no. 3, June 1999, pp. 193-196.

Page 35 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

this process.

p: field modulus of the curve E as defined over Z/pZ.

a,b: curve parameters of £

G: Generator Point

o n: ord(QG)

h: cofactor

Let us compute an example curve and all the parameters before be-

ginning with the process?.

For the purpose of the example let,

E:y*=2>+22+2 (mod 17) (4.11)

and therefore G = (5, 1). Such small numbers are never used since they are

not secure, but to illustrate the example it is sufficient.

Now we need to generate the cyclic group using G. The first step is

to compute 2G which is G 4+ G. To do this we can use the point doubling

25Pierce, Robert. “Elliptic Curve Diffie Hellman,” YouTube, 10 Dec. 2014,
www.youtube.com/watch?v=F3zzNa42-tQ. Accessed on 3 Jan. 2019.
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formula derived in equation 4.9:

2
_ 3rs +a (4.12)
2yc
Since G = (5,1), g =5 and yg = 1 and a = 2 from 4.11:
3(5%) +2 77 »
=——"—=—= 27 = =1 1 4.1
m 20 5 7 - 9-9=13 (mod 17) (4.13)

Note: 27! (mod 17) = 9 was computed using the Extended Euclidean Al-

gorithm which is outside the mathematical scope of this essay.

Next, we compute the z9¢ and ys coordinates for 2G using the for-

mula in 4.10

Tog = m? — 2z (4.14)
2o =132 —2(5) =169 — 10 =16 —10 =6 (mod 17) (4.15)
and,
Yoc = m(re — T26) — Yo (4.16)
Yoo =13(6—6) —1=—-13—-—1=—-14=3 (mod 17) (4.17)

The coordinates of 2G are (6,3). Just like this we need to compute the

whole cyclic group till the last point O. The cyclic group for our £ and G

G =(51) =(9,16) 9G = (7,6) 13G = (16,4) 17G = (6, 14)
2G = (6,3) = (16,13) 10G = (7,11) 14G=(9,1)  18G = (5,16)
3G = (10,6) =(0,6) 11G=(13,10) 15G =(3,16) 19G =0

4G = (3,1) =(13,7) 12G=(0,11) 16G = (10,11)

We find that n = 19 and h = 1 by counting the number of points in
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this subgroup.

We are using the Elliptical Curve Diffie-Hellmann exchange since it is
the most popular but other protocols are also in use today. The process for

ECDH follows the typical public-key exchange structure we saw in section

1.1 with Bob and Alice:

1. Bob picks a private key such § such that 1 < § < n—1 and computes
the point B = BG through scalar multiplication and which lies on the
curve E. Let f =9 then B = 9G = (7,6).

2. Alice picks a private key such a such that 1 < a < n—1 and computes
the point B = aG through scalar multiplication and which lies on the

curve F. Let a = 3 then A = 3G = (10, 6).

3. Bob and Alice swap the information about A = (x4, yg) and B = (x5, yp).
This information is made public and acts as the public keys. How-
ever, this does not give the public information about v and 3 due to

the ECDLP explained in section 4.4.
4. Alice multiplies Bob’s point with her private key P = a x B = afG.
This gives Alice aB = 3B = 3(9G) = 27G = 8G = (13, 7). Here 27G

reduces to 8G since the order of the cyclic group was n = 19.

5. Bob multiplies Alice’s point with his private key P = 3 x A = faG.

Similar to Alice, Bob computes (13, 7)
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6. Bob and Alice now have the same point on the curve P that no one
else has. They are free to use this information as they wish. For
example, they can use the x-coordinate to encrypt messages. This is
very secure since no third party has access to a or § and therefore

cannot compute the point P due to the ECDLP.
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5 Conclusion

Digital packets or messages make up all major internet processes.
When we visit a website, buy something using a credit card, or send cryp-
tocurrency over the internet, all our information is encrypted into these
digital messages before being sent. As we have seen, RSA and ECC are
two methods to secure these digital messages. Do RSA and ECDH

effectively secure digital packets?

Going back to the assumptions in section 1.2, we can see that what
we needed to assume as true allows these protocols to be secure. If someone
wanted to decipher a message encrypted using the RSA, they would need
the decryption key d. From the encryption process of the RSA (section
3.2) we know that e and n are shared as the public key to allow anyone to
send the receiver a message.. To compute d from e and n is only possible if
someone knew ¢(n). Without the knowledge of the two very large primes
D, q, it is very difficult to get ¢(n). Intuitively, one would try to factor n
into p and ¢. This is very difficult as one has to check for every number
from 0 to y/n until they find p or q. For RSA key sizes which are usually
1024 to 2048 digits long (see Appendix B), this would take years and years,
even for the fastest supercomputers. Another way to do it would be count
the integers less than n — 1 which satisfy ged(integer,n) = 1. With modern
RSA standards using n at least as large as 219%*, this would take many years

even with the fastest supercomputers.

On the other hand, ECDH, a protocol of ECC, is secure not only be-
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cause of the difficulty of factoring large primes but also due to the ECDLP
(section 4.4). There have been various attempts to partially solve this
problem like baby-step-giant-step, Pollard rho and kangaroo, index calcu-
lus, and summation polynomials are all techniques used?® but nothing that
makes ECC unusable for even the most secure application. Furthermore,
as seen in Appendix C, ECC can make use of smaller bit-sizes and provide
and equivalent security to RSA. Therefore, the persistence of RSA is only
due to the ubiquity of public key infrastructure that supports it, such as
in modern browsers. Newer applications like cryptocurrency (and other
applications of blockchain protocols) often do choose to use ECC rather
than RSA for authentication, but for existing applications the switching

costs are high.

26Galbraith, Steven D. and Pierrick Gaudry. “Recent progress on the Elliptic Curve
Discrete Logarithm Problem. Designs, Code, and Cryptography, vol. 78, no. 1, 23 Nov.
2015, pp. 51-72.

Page 41 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

Works Cited

Print

Amara, Moncef, and Amar Siad. “Elliptic Curve Cryptography and Its
Applications.” International Workshop on Systems, Signal
Processing and Their Applications, WOSSPA, May 2011.

Bressoud, David M. “The RSA Public Key Crypto-System.” Factorization

and Primality Testing Undergraduate Texts in Mathematics, 1989.

Burton, David M. Elementary Number Theory. Tth ed., McGraw-Hill,

Higher Education, 2011.

Euclid, and Thomas Little Heath. The Thirteen Books of Fuclids

Elements. Vol. 2, Cambridge University Press, 2015.

Fannon, Paul, et al. Mathematics Higher Level for the IB Diploma Option

Topic 10 Discrete Mathematics. Cambridge University Press, 2013.
Galbraith, Steven D., and Pierrick Gaudry. “Recent Progress on the
Elliptic Curve Discrete Logarithm Problem.” Designs, Codes and

Cryptography, vol. 78, no. 1, 23 Nov. 2015.

Pettofrezzo, Anthony J., and Donald R. Byrkit. Elements of Number

Theory. Prentice-Hall, 1970.

Page 42 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

Rivest, R. L., et al. “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems.” Communications of the ACM, vol. 21,
no. 2, 1 Jan. 1978.

Singh, Soram Ranbir, et al. “A Critical Review on Elliptic Curve
Cryptography.” International Conference on Automatic Control

and Dynamic Optimization Techniques (ICACDOT), Sept. 2016.

Smart, N. P. “The Discrete Logarithm Problem on Elliptic Curves of

Trace One.” Journal of Cryptology, vol. 12, no. 3, June 1999.

Yin, Xinchun, and Jinliang Zou. “A Parallel Base Point Choosing
Algorithm of ECC on Binary Field.” International Conference on
Systems and Informatics (ICSAI), May 2012.

Online

Bauer, Johannes. “Elliptic Curve Cryptography Tutorial.” Johannes
Bauer, www.johannes-bauer.com/compsci/ecc/. Accessed on 19

Sept. 2018.

Corbellini, Andrea. “Elliptic Curve Cryptography: a Gentle
Introduction.” Andrea Corbellini Atom,
andrea.corbellini.name/2015/05/17 /elliptic-curve-cryptography-a-

gentle-introduction/. Accessed on 24 Sept.

Page 43 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

2018.

Daubechies, Ingrid, and Shannon Hughes. “Lecture Notes: Cryptography
Part 2.” Math Alive, Princeton University,
web.math.princeton.edu/math_alive/index.shtml. Accessed on 4

Oct. 2018.

Davis, Tom R. “Elliptic Curve Cryptography.” Mathematical Circles
Topics, 3 Nov. 2013, www.geometer.org/mathcircles/ecc.pdf.
Accessed on 9 Jan. 2018.

“Fermat’s Little Theorem.” Brilliant Math & Science Wiki,
brilliant.org/wiki/fermats-little-theorem/. Accessed on 8 Dec.
2018.

Kaliski, Burt. “The Mathematics of the RSA Public-Key
Cryptosystem.” Mathematics and Statistics Awareness Month,
Mathaware, www.mathaware.org/mam/06/Kaliski.pdf. Accessed

on 15 Oct. 2018.
Lynn, Ben. “Number Theory.” Applied Cryptography Group, Stanford

University, crypto.stanford.edu/pbc/notes/numbertheory /crt.html.
Accessed on 1 Oct 2018.

Page 44 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

Ouwehand, Martin. “The (Simple) Mathematics of RSA.” L ’Autorit De
Certification De L’EPFL, certauth.epfl.ch/rsa/. Accessed on 15

Oct. 2018.

Pierce, Robert. “Elliptic Curve Diffie Hellman,” YouTube, 10 Dec. 2014,
www.youtube.com/watch?v=F3zzNa42-tQ. Accessed on 3 Jan.

2019.

Rodin, Altha. Subgroups. M328K, University of Texas, Aug. 2000,

web.ma.utexas.edu/users/rodin /343K /Subgroups.pdf.

Page 45 of 49




How do modern cryptographic methods effectively secure online communications,
transactions, and the internet?

Appendix A Code used in encryption and
decryption of RSA

Encryption in Python 3.7:

e = 37
n =177

public_key = [e,n]

plaintext
plaintext

input ( )
list (plaintext)

print (ord(plaintext [1]))

def encrypt(p):
return pow(p, public_key[0], public_key[1])

for i in plaintext:
print (encrypt (ord(i)))

Output: 17 66

Decryption in Python 3.7:

d = 13
n =77

private_key = [d,n]
ciphertext = [17,66]
def decrypt(c):
return pow(c, private_key[0], private_key[1])

for i in ciphertext:
print (decrypt (i))

Output: 73 66
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Appendix B Recommended RSA parame-

ters

The National Institute of Standards and Technology (NIST) part of
the United States Department of Commerce recommends the key-size, that
is the number of digits of n, to be 2048-bit for the period of time from the

year 2016 to 2030 in the NIST Special Publication 800-57.
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Appendix C RSA vs. ECC, a comparison

of key-size to security level

United States, Department of Commerce, National Institute of Standards
and Technology. "NIST Special Publication 800-57 Part 1 Revision 4”
Recommendation for Key Management Part 1: General, by Elaine Barker,
Jan. 2016, nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57ptlrd.pdf, p. 53.

Symmetric
key
algorithms

FFC IFC ECC
(e.g., DSA,D-H) | (e.g., RSA) | (e.g., ECDSA)

Security
Strength

L=2048
112 3TDEA k=2048 f=224-255
N=224
L=3072
128 AES-128 k=3072 f=256-383
N=256
L=7680
192 AES-192 k="7680 f=384-511
N=1384
L =15360
256 AES-256 k=15360 Jf=512+
N=512
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Appendix D ASCII values of most common

symbols

Pattis,

Dec Char
0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 TAB

10 LF
11 VT
12 FF
13 CR
14 SO
15 sI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FS
29 GS
30 RS
31 US

(null)

(start of heading)
(start of text)

(end of text)

(end of transmission)
(enquiry)
(acknowledge)

(bell)

(backspace)
(horizontal tab)

(NL line feed, new line)
(vertical tab)

(NP form feed, new page)
(carriage return)
(shift out)

(shift in)

(data link escape)
(device control 1)
(device control 2)
(device control 3)
(device control 4)
(negative acknowledge)
(synchronous idle)
(end of trans. block)
(cancel)

(end of medium)
(substitute)

(escape)

(file separator)
(group separator)
(record separator)
(unit separator)

Richard E. ASCII Table,

Carnegie
www.cs.cmu.edu/ pattis/15-1XX/common/handouts/ascii.html.

-
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